Restricted Partition Functions as Bernoulli and Euler Polynomials of Higher Order

نویسندگان

  • Boris Y. Rubinstein
  • Leonid G. Fel
چکیده

Explicit expressions for restricted partition function W (s,d) and its quasiperiodic components Wj(s,d ) (called Sylvester waves) for a set of positive integers d = {d1, d2, . . . , dm} are derived. The formulas are represented in a form of a finite sum over Bernoulli and Euler polynomials of higher order with periodic coefficients. A novel recursive relation for the Sylvester waves is established. Application to counting algebraically independent homogeneous polynomial invariants of the finite groups is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted partition functions as Bernoulli and Eulerian polynomials of higher order

Abstract Explicit expressions for restricted partition function W (s, d) and its quasiperiodic components W j (s, dm) (called Sylvester waves) for a set of positive integers dm = {d1, d2, . . . , dm} are derived. The formulas are represented in a form of a finite sum over Bernoulli and Eulerian polynomials of higher order with periodic coefficients. A novel recursive relation for the Sylvester ...

متن کامل

An explicit form of the polynomial part of a restricted partition function

We prove an explicit formula for the polynomial part of a restricted partition function, also known as the first Sylvester wave. This is achieved by way of some identities for higher-order Bernoulli polynomials, one of which is analogous to Raabe’s well-known multiplication formula for the ordinary Bernoulli polynomials. As a consequence of our main result we obtain an asymptotic expression of ...

متن کامل

Extension of the Bernoulli and Eulerian Polynomials of Higher Order and Vector Partition Function

Following the ideas of L. Carlitz we introduce a generalization of the Bernoulli and Eulerian polynomials of higher order to vectorial index and argument. These polynomials are used for computation of the vector partition function W (s,D), i.e., a number of integer solutions to a linear system x ≥ 0, Dx = s. It is shown that W (s,D) can be expressed through the vector Bernoulli polynomials of h...

متن کامل

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

An Explicit Formula for Restricted Partition Function through Bernoulli Polynomials

Explicit expressions for restricted partition function W (s,d) and its quasiperiodic components Wj(s,d ) (called Sylvester waves) for a set of positive integers d = {d1, d2, . . . , dm} are derived. The formulas are represented in a form of a finite sum over Bernoulli polynomials of higher order with periodic coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008